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Abstract
In this paper, new families of soliton-like solutions are obtained for
(2 + 1)-dimensional integrable Broer–Kaup equations by using the symbolic
computation method developed by Gao and Tian. Sample solutions obtained
from these methods are presented. Solitary wave solutions are merely a special
case in one family. The method can also be extended to other types of nonlinear
evolution equations in mathematical physics.

PACS numbers: 0230I, 0545Y

1. Introduction

As is well known, many completely integrable models were presented during the course of
studying shallow water waves. For example, KdV-type equations, the WBK equation, the
integrable long wave equation, the Boussinesq equation, etc. Finding exact solutions, in
particular soliton solutions, of these nonlinear evolution equations (NEEs) plays an important
role in soliton theory [1–3]. Up to now, there exist many powerful methods to search for exact
solutions of NEEs, such as the Backlund transformation, Darboux transformation, Hirota
method, bilinear method, tanh method, etc [1–17]. But finding more powerful methods is still
a significant subject in solving NEEs in soliton theory and its applications.

With the rapid development of computerized symbolic computation, the application of
symbolic computation to the physical and mathematical sciences appears to have a bright future.
There have recently appeared more studies on the exact solutions of KdV-type equations, the
(3+1)-dimensional Jimbo–Miwa equation, (2+1)-dimensional breaking soliton equations, the
(2 + 1)-dimensional dispersive long wave equation and the (2 + 1)-dimensional KPP equation,
such as [9–15] and references therein.

For the integrable Broer–Kaup (BK) equations in (2 + 1)-dimensional spaces [4, 5]

Hty + 2(HHx)y + 2Gxx −Hxxy = 0

Gt + 2(GH)x +Gxx = 0
(1)
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Painlevé properties and infinite many truncated symmetries with arbitrary function in t of the
system (1) have recently been studied [8] by using both the WTC approach [6] and the formal
series symmetry method [7]. In this paper, we would like to use symbolic computation to
obtain new families of exact solutions to the integrable BK equation in (2 + 1)-dimensional
spaces, and to give examples of these solutions obtained.

The rest of the paper is organized as follows. In section 2, a transformation of system (1) is
presented. In section 3, many types of explicit exact soliton-like solutions, including solitary
wave solutions, are obtained for system (1) by using symbolic computation. Finally, some
conclusions are given in section 4.

2. Leading to a transformation for system (1)

The main ideas of the following two basic methods are important:

(a) Hirota’s dependent variables transformation [16,17] introduces, to begin with, a dependent
variable φ(x, t) with a differentiator acting on its function f (φ(x, t)) = ln(φ(x, t)).

(b) The Clarkson–Kruskal method [18] considers a general function F(x, t,�(x, t)) and
tries to established an ordinary differential equation (ODE) for φ(x, t) so as to impose
conditions upon F and φ.

Recently, based on the above two ideas, Gao and Tian presented a direct method that has
been successfully applied to find soliton-like solutions of (2 + 1)-dimensional breaking soliton
equations, the (2 + 1)-dimensional dispersive long wave equation and (2 + 1)-dimensional
generalized shallow water wave equations [11–13].

In order to find exact solutions to system (1), based on the idea of the method developed
by Gao and Tian, we assume that system (1) possesses the following solutions:

H(x, y, t) = ∂mx ∂ny h[w(x, y, t)] + A

G(x, y, t) = ∂ix∂jy g[w(x, y, t)] + B
(2)

where the integers m, n, i and j , as well as the constants A and B are to be determined
later. The leading-order analysis is performed as follows: for the first equation of system (1),
the (possible) highest-power terms are w2m+1

x w2n+1
y , wi+2

x w
j
y and wm+2

x wn+1
y , which are,

respectively, contributed by (HHx)y ,Gxx andHxxy . Then the balancing act requires that these
three terms have the same power, i.e. 2m+1 = i+2 = m+2 and 2n+1 = j = n+1. Similarly,
for the second equation of system (1), the (possible) highest-power terms are wm+i+1

x w
n+j
y and

wi+2
x w

j
y , which are, respectively, contributed by (GH)x and Gxx . Then the balancing act

requires that these two terms have the same power, i.e. m + i + 1 = i + 2 and n + j = j .
Therefore, we conclude the analysis with m = i = j = 1 and n = 0, so as to get from
system (2)

H(x, y, t) = ∂

∂x
h[w(x, y, t)] + A = h′wx + A

G(x, y, t) = ∂2

∂x∂y
g[w(x, y, t)] + A = g′′wxwy + g′wxy + B

(3)

in which the functions H(x, y, t) and G(x, y, t) are expressed by two functions h(w) and
g(w) of one argument w(x, y, t) only. Where the function h(w), g(w) and the constants A,
B are to be determined later, the prime denotes differentiation w.r.t. w.
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3. Exact soliton-like solutions of system (1)

With the aid of symbolic computation software such as Mathematica or Maple, substituting
system (3) into system (1), and collecting all the homogeneous terms in partial derivatives of
w(x, y, t), we get

[−h′′′′ + 2(h′′2 + h′h′′′) + 2g′′′′]w3
xwy − 3h′′′w2

xwxy − 3h′′′wxwywxx
+2(3h′h′′w2

xwxy + 2h′h′′wxwywxx + Ah′′′w2
xwy) + 6g′′′w2

xwxy

+6g′′′wxwywxx + h′′′wxwywt − 3h′′wxxwxy − 3h′′wxwxxy − h′′wywxxx
+2(h′2wxxwxy + h′2wxwxxy + 2Ah′′wxwxy + Ah′′wywxx) + 6g′′wxywxx
+6g′′wxwxxy + 2g′′wywxxx + h′′wxywt + h′′wxwyt + h′′wywxt
−h′wxxxy + Awxxy + 2g′wxxxy + h′wxyt = 0 (4)

[g′′′′ + 2(h′g′′′ + h′′g′′)]w3
xwy + 3g′′′w2

xwxy + 3g′′′wxwywxx
+2(2h′g′′w2

xwxy + 2h′g′′wxwywxx + Ag′′′w2
xwy + h′′g′w2

xwxy) + g′′′wxwywt
+3g′′wxxwxy + 3g′′wxwxxy + g′′wywxxx + 2(h′g′wxxwxy + h′2wxwxxy
+2Ag′′wxwxy + Ag′′wywxx + Bh′′w2

x) + g′′wxywt + g′′wxwyt + g′′wywxt
+g′wxxxy + 2(Ag′wxxy + g′wxyt + Bh′wxx) = 0. (5)

From equations (4) and (5), we can find that the nonlinear terms and the highest-order
partial derivative terms in system (1) have been balanced by using system (3). To determine
the functions h(w) and g(w), we set the coefficients of the termw3

xwy in equations (4) and (5)
to zero, respectively, which yield a system of ODEs with respect to h(w) and g(w):

−h′′′′ + 2(h′′2 + h′h′′′) + 2g′′′′ = 0

g′′′′ + 2(h′g′′′ + h′′g′′) = 0
(6)

which have the special solutions in the form

h[w(x, y, t)] = g[w(x, y, t)] = lnw(x, y, t) (7)

which implies that

h′h′′ = − 1
2h

′′′ g′′′ = h′′′ h′2 = −h′′ g′ = h′ g′′ = h′′

h′g′′ = − 1
2g

′′′ h′′g′ = − 1
2g

′′′ h′g′ = −g′′.
(8)

Having seen the expression for h(w) and g(w) from equations (7) and (8), we investigate
w(x, y, t). Substituting equations (7) and (8) into (4) and (5) and setting the coefficients of
h′′′, h′′, h′, g′′′, g′′ and g′ to zero, yield a over-determined system of partial differential equations
w.r.t. w:
wxwy(wxx + 2Awx + wt) = 0

wy(wxx + 2Awx + wt) + wx∂y(wxx + 2Awx + wt) + wxx(wxx + 2Awx + wt) = 0

∂xy(wxx + 2Awx + wt) = 0
wy(wxx + 2Awx + wt) + wx∂y(wxx + 2Awx + wt) + wxx(wxx + 2Awx + wt) + 2Bw2

x = 0

∂xy(wxx + 2Awx + wt) + 2Bwxx = 0

(9)

which hold, provided that

wxx + 2Awx + wt = 0 (10a)

B = 0. (10b)

One can see that the following simple formal solution for equation (10a),

w(x, y, t) = 1 + exp(αx + βy + γ t + δ)
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would lead to nothing but solitary waves, where α, β, γ and δ are proper constants.
Nevertheless, this clue inspires one to proceed further. More sophisticated than solitary

waves is the following x-linear form:

w(x, y, t) = P(y, t) + exp[�(y, t)x +�(y, t)] (11)

whereP(y, t),�(y, t) and�(y, t) are differentiable functions of y and t only to be determined
later. After the substitution of equations (3), (7), (8), (10) and (11) with symbolic computation,
we find that two equations of system (1) give rise to the same large equation as follows:

−x2e�x+�P��y�t + (e�x+�)2�yt + xe�x+�(Pt��y − 2AP�2�y − P�3�y

+P��yt + Py��t + 2P�t�y − P��t�y − P��y�t)
+e�x+�(−Pty� + 2APy�

2 + Py�
3 − Pt�y + 4AP��y + 3P�2�y

+2P�ty − Py�t + Pt��y − 2AP�2�y − P�3�y

+P�t�y + P��yt + Py��t + P�y�t − P��t�y)
+P 2��t�yx

2 − P(Pt��y − 2AP�2�y − P�3�y

+P��yt + Py��t + 2P�t�y − P��t�y − P��y�t)x
−PPty� + 2PtPy�t − PPy�3 + P 2�ty − PPt�y
+3P 2�2�y − PPy�t − PPt��y + P 2�2�y + P 2�t�y

+P 2��ty − PPy��t + P 2�y�t + P 2��t�y

−2APPy�
2 + 4AP 2��y + 2AP 2�2�y = 0 (12)

which will be satisfied if these terms with x2e�x+� , xe�x+� , (e�x+�)2, e�x+� , x2, x and x0

are assumed to vanish separately, that is to say, if we set the coefficients of x2e�x+� , xe�x+� ,
(e�x+�)2, e�x+� , x2, x and x0 to zero. Correspondingly, equation (12) reduces to be a set of
constraints, after some algebraic calculations and reductions:

�y�t = �yt = 0
Pt�y − 2AP��y − P�2�y + Py�t − P�t�y − P�y�t = 0
−PPty + PtPy + 2P 2��y + P 2�ty + 2AP 2�y = 0
PtPy−PPy�2−PPt�y+P 2�2�y − PPy�t + P 2�t�y − 2APPy� + 2AP 2��y = 0.

(13)

Hence we can obtain two new soliton-like solutions of system (1) as follows.

(I) When P(y, t) > 0,

H(x, y, t) = ∂

∂x
h[w(x, y, t)] + A = �(y, t)e�(y,t)x+�(y,t)

P (y, t) + e�(y,t)x+�(y,t)
+ A

= �(y, t)

2

{
1 + tanh

[
�(y, t)x +�(y, t)− lnP(y, t)

2

]}
+ A (14)

G(x, y, t) = ∂2

∂x∂y
g[w(x, y, t)] = �(y, t)[�y(y, t)x +�y(y, t)− Py(y, t)/P (y, t)]

4

×sech2

[
�(y, t)x +�(y, t)− lnP(y, t)

2

]

+
�y(y, t)

2

{
1 + tanh

[
�(y, t)x +�(y, t)− lnP(y, t)

2

]}
. (15)

(II) When P(y, t) < 0,

H(x, y, t) = ∂

∂x
h[w(x, y, t)] + A = �(y, t)e�(y,t)x+�(y,t)

P (y, t) + e�(y,t)x+�(y,t)
+ A



Exact soliton-like solutions to integrable BK equations 1789

= �(y, t)

2

{
1 + coth

[
�(y, t)x +�(y, t)− ln |P(y, t)|

2

]}
+ A (16)

G(x, y, t) = ∂2

∂x∂y
g[w(x, y, t)] = �(y, t)[�y(y, t)x +�y(y, t)− Py(y, t)/P (y, t)]

4

×csch2

[
�(y, t)x +�(y, t)− ln |P(y, t)|

2

]

+
�y(y, t)

2

{
1 + coth

[
�(y, t)x +�(y, t)− ln |P(y, t)|

2

]}
. (17)

Remark. We call it a solitary wave solution if a certain solution contains the variable
1
2 (�(y, t)x + �(y, t) − ln |P(y, t)|) which is a linear form of x, y and t : otherwise, we
call it a soliton-like solution.

The physical interest of the solutions obtained above lies in the fact that they describe
certain soliton-like surface waves. The actual form of the amplitude depends on the choices of
�(y, t), �(y, t) and P(y, t), while its horizontal velocity depends on �(y, t). As examples,
we shall consider the following cases. (Remark: in the following part, we only consider
solutions (14) and (15) further, because solutions (16) and (17) are similar to solutions (14)
and (15).)

Case 1. When �(y, t) = θ = const �= 0, it is easy to deduce from equation (13) that

−PPty + PtPy + P 2�ty = 0
PtPy − PPyθ2 − PPt�y + P 2�t�y + P 2θ2�y − PPy�t
−2APPyθ + 2AP 2θ�y = 0

(18)

and the exact soliton-like solutions can be written as

H(x, y, t) = θ

2
tanh

[
θx +�(y, t)− lnP(y, t)

2

]
+
θ

2
+ A (19)

G(x, y, t) = θ [�y(y, t)− Py(y, t)/P (y, t)]
4

sech2

[
θx +�(y, t)− lnP(y, t)

2

]
(20)

where P(y, t) and �(y, t) satisfy equation (18). In this case, there also exist several types of
solutions to be considered further:

Case 1a. Soliton-like solution. When P(y, t) = c1y + c2, A = 0, we obtain from
equation (26) that �(y, t) = ψ(y) − θ2t . Thus the corresponding solutions of system (1)
are

H(x, y, t) = θ

2

{
1 + tanh

[
θx + ψ(y)− θ2t − ln(c1y + c2)

2

]}
(21)

G(x, y, t) = θ [ψy(y)− c1/(c1y + c2)]

4
sech2

[
θx + ψ(y)− θ2t − ln(c1y + c2)

2

]
. (22)

Case 1b. Solutions independent of y. When P(y, t) = c1y + c2, A �= 0 with arbitrary
constants c1 and c2, we obtain from equation (20) that�(y, t) = ln(c1y + c2)− θ2t . Thus the
corresponding solutions independent of y for system (1) are

H(x, y, t) = θ

2

{
1 + tanh

[
θx − θ2t

2

]}
+ A (23)

G(x, y, t) = 0. (24)
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Case 1c. Solitary waves. Let us take that

�(y, t) = αy + βt + γ P (y, t) = 1 (25)

with α, β and γ constants. Substituting equation (25) into (18) we get

A = −β + θ2

2θ
.

Therefore we have solitary wave solutions of system (1):

H(x, y, t) = θ

2

{
1 + tanh

[
θx + αy + βy + γ

2

]}
− β + θ2

2θ
(26)

G(x, y, t) = αθ

4
sech2

[
θx + αy + βy + γ

2

]
(27)

in which the variable 1
2 (θx + αy + βy + γ ) is a linear form of x, y and t . Thus we call them

solitary wave solutions of system (1). It is clear that they are nothing other than a special case
of solutions (21) and (22).

Case 1d. Soliton-like solution. Taking P(y, t) = c3et + c4 with arbitrary constants c3 and
c4, the first equation of system (24) becomes

�(y, t) = 0 i.e. �(y, t) = α(y) + β(t) (28)

where α(y) and β(t) are arbitrary, differentiable functions. Substituting equation (28) into the
second equation of system (18) yields

�(y, t) = α(y)− (�2 + 2A�− 1)t. (29)

As a result, we get another solution of system (1):

H(x, y, t) = θ

2

{
1 + tanh

[
θx + α(y)− (θ2 + 2Aθ − 1)t − ln(c3et + c4)

2

]}
+ A (30)

G(x, y, t) = θαy(y)

4
sech2

[
θx + α(y)− (θ2 + 2Aθ − 1)t − ln(c3et + c4)

2

]
(31)

in which the variable 1
2 [θx + α(y)− (θ2 + 2Aθ − 1)t − ln(c3et + c4)] is a nonlinear form of y

and t . Thus we call them soliton-like solutions of system (1).

Case 2. When �y(y, t) �= 0,�t(y, t) = 0, i.e. �(y, t) = θ(y), it is easy to deduce from
equation (19) that

Pt − 2APθ − Pθ2 − P�t = 0
−PPty + PtPy + 2P 2θθy + P 2�ty + 2AP 2θy = 0

(32)

and we have

H(x, y, t) = θ(y)

2

{
1 + tanh

[
�(y)x +�(y, t)− lnP(y, t)

2

]}
+ A (33)

G(x, y, t) = θ(y)[θy(y)x +�y(y, t)− Py(y, t)/P (y, t)]
4

×sech2

[
θ(y)x +�(y, t)− lnP(y, t)

2

]

+
θy(y)

2

{
1 + tanh

[
θ(y)x +�(y, t)− lnP(y, t)

2

]}
. (34)
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Case 2a. Taking P(y, t) = p1(y)p2(t) with the arbitrary functions p1(y) and p2(t),
equation (32) can rewritten as

p2t (t)

p2(t)
− 2Aθ − θ2 −�t = 0

2θθy +�ty + 2Aθy = 0.
(35)

It is noted that the integration of the second equation of system (35) over y leads to the first
equation of system (35). The second time of integration over t further leads to the expression

�(y, t) = −θ2(y)t − 2Aθ(y)t + ψ(y) + lnp2(t) (36)

where ψ(y) is an arbitrary function of y. Therefore we have

H(x, y, t) = θ(y)

2

{
1 + tanh

[
θ(y)x − θ2(y)t − 2Aθ(y)t + ψ(y)− lnp1(y)

2

]}
+ A (37)

G(x, y, t) = θ(y)[θy(y)x − 2θ(y)θy(y)t − 2Aθy(y)t + ψy(y)− p1y(y)/p1(y)]

4

×sech2

[
θ(y)x − θ2(y)t − 2Aθ(y)t + ψ(y)− lnp1(y)

2

]

+
θy(y)

2

{
1 + tanh

[
θ(y)x − θ2(y)t − 2Aθ(y)t +�(y)− lnp1(y)

2

]}
(38)

where θ(y), p1(y) and ψ(y) are all arbitrary, differentiable functions of y.

Case 2b. Taking P(y, t) = p1(y) + p2(t) with the arbitrary functions p1(y) and p2(t),
equation (32) can rewritten as

p2t (t)

p1(y) + p2(t)
− 2Aθ − θ2 −�t = 0

p1yp2t + [p1(y) + p2(t)] + 2θθy +�ty + 2Aθy = 0.
(39)

It is noted that the integration of the second equation of system (35) over y leads to the first
equation of system (41). The second time of integration, over t , further leads to the expression

�(y, t) = −θ2(y)t − 2Aθ(y)t + ψ(y) + ln(p1(y) + p2(t)) (40)

where ψ(y) is an arbitrary function of y. Thus we get

H(x, y, t) = θ(y)
{

1 + tanh

[
θ(y)x + −θ2(y)t − 2Aθ(y)t + ψ(y)

2

]}
+ A (41)

G(x, y, t) = θ(y)[θy(y)x − 2θ(y)θy(y)t − 2Aθy(y)t + ψy(y)]

4

×sech2

[
θ(y)x − θ2(y)t − 2Aθ(y)t + ψ(y)

2

]

+
θy(y)

2

{
1 + tanh

[
θ(y)x − θ2(y)t − 2Aθ(y)t + ψ(y)

2

]}
(42)

where θ(y) and ψ(y) are all arbitrary, differentiable functions of y. Though P(y, t) are
different between case 2a and case 2b, the solutions (41) and (42) are the special cases of the
solutions (37) and (38).
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Case 3. When �t(y, t) �= 0, �y(y, t) = 0, i.e. �(y, t) = θ(t), it is easy to deduce from
equation (13) that

Py − P�y = 0
−PPty + PtPy + P 2�ty = 0

(43)

which leads to

�(y, t) = ψ1(y) + ψ2(t) P (y, t) = P(t) exp[ψ1(y) + ψ2(t)] (44)

where ψ1(y), ψ2(t) and P(t) are arbitrary functions. Therefore we have

H(x, y, t) = θ(t)

2

{
1 + tanh

[
θ(t)x − lnP(t)

2

]}
+ A (45)

G(x, y, t) = 0. (46)

In this case, the solution H(x, y, t) is independent of y, and G(x, y, t) is zero.

4. Summary and conclusions

In summary, we have obtained many families of soliton-like solutions for the BK equation in
(2 + 1)-dimensional spaces by using the symbolic computation method developed by Gao and
Tian. This method plays an important role in studying many properties of NEEs in soliton
theory. These solutions obtained may be of important significance for the explanation of some
practical physical problems.
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